Las redes neuronales convolucionales o ConvNets son útiles en variadas aplicaciones dentro del machine learning, sin embargo, donde ha conseguido revolucionar el estado del arte es en la visión artificial y el procesado de imágenes. Lo que caracteriza a este tipo de redes es que es capaz de aprender en las primeras capas una serie de características básicas de la imagen, como son líneas o formas más o menos simples. En posteriores fases aprende a discriminar entre elementos más complejos, como ojos u orejas. Finalmente, en capas más profundas son capaces de diferenciar objetos complejos, como personas, perros, gatos o coches. En la siguiente imagen se plasma visualmente lo que quiero decir. Antes de hablar de las redes convolucionales convendrá explicar qué es eso de la convolución y para qué sirve. En el ámbito del tratamiento de imágenes, la convolución es una operación que involucra dos matrices. Por un lado la propia imagen a la que queremos aplicar la convolución (en forma de m
Is this real or is it a game? What's the difference?